
JavaScript
JavaScript is the scripting language that can make pages dynamic by manipulating the
DOM after a page has already loaded in the browser. As I mentioned earlier, getting to
know D3 is also a process of getting to know JavaScript. We’ll dig in deeper as we go,
but here is a taste to get you started.

Hello, Console
Normally, we write JavaScript code (or, a “script”) in a text file, and then load that file
to the browser in a web page. But you can also just type JavaScript code directly into
your browser. This is an easy and quick way to get your feet wet and test out code. We’ll
also use the JavaScript console for debugging, as it’s an essential tool for seeing what’s
going on with your code.

In Chrome, select View→Developer→JavaScript Console. In Firefox, choose
Tools→Web Developer→Web Console. In Safari, go to Develop→Show Error Console
(see Figure 3-9).

Figure 3-9. A fresh JavaScript console… delicious!

The console accepts one line of code at a time, and it always spits back the result of
whatever you input. For example, if you enter the number 7, the console returns the
mind-numbingly obvious result of 7. Brilliant.

Other times, you’ll want your script to print values out to the console automatically, so
you can keep an eye on what’s going on. As you’ll see in some examples that follow, you
can use console.log("something"); to do that.

Type the following examples into the console to see how it works.

Variables
Variables are containers for data. A simple variable holds one value:

var number = 5;

JavaScript | 35

In that statement, var indicates you are declaring a new variable, the name of which is
number. The equals sign is an assignment operator because it takes the value on the right
(5) and assigns it to the variable on the left (number). So when you see something such
as:

defaultColor = "hot pink";

try to read the equals sign not as “equals” but as “is set to.” So that statement could be
stated in plain English as “The variable defaultColor is set to hot pink.”

As you’ve just seen, variables can store numeric values as well as strings of text, so called
because they are formed by stringing together individual characters of text. Strings must
be enclosed by quotation marks. True or false (Boolean) values can also be stored:

var thisMakesSenseSoFar = true;

Also note that in JavaScript, statements are concluded with a semicolon.

You can try making some variables yourself in the console. For example, type var
amount = 200, then press Enter, then on a new line just enter amount and press Enter.
You should see 200 returned to you in the console—proof that JavaScript remembered
the value you assigned to amount!

Other Variable Types
A variable is a datum, the smallest building block of data. The variable is the foundation
of all other data structures, which are simply different configurations of variables.

Now we’ll address some of these more complex forms of data, including arrays, objects,
and arrays of objects. You might want to skip this section for now, but reference it later,
once you’re ready to load your own data into D3.

Arrays
An array is a sequence of values, conveniently stored in a single variable.

Keeping track of related values in separate variables is inefficient:

var numberA = 5;
var numberB = 10;
var numberC = 15;
var numberD = 20;
var numberE = 25;

Rewritten as an array, those values are much simpler. Hard brackets [] indicate an array,
and each value is separated by a comma:

var numbers = [5, 10, 15, 20, 25];

36 | Chapter 3: Technology Fundamentals

Arrays are ubiquitous in data visualization, so you will become very comfortable with
them. You can access (retrieve) a value in an array by using bracket notation:

numbers[2] //Returns 15

The numeral in the bracket refers to a corresponding position in the array. Remember,
array positions begin counting at zero, so the first position is 0, the second position is
1, and so on:

numbers[0] //Returns 5
numbers[1] //Returns 10
numbers[2] //Returns 15
numbers[3] //Returns 20
numbers[4] //Returns 25

Some people find it helpful to think of arrays in spatial terms, as though they have rows
and columns, like in a spreadsheet:

Position Value

0 5

1 10

2 15

3 20

4 25

Arrays can contain any type of data, not just integers:

var percentages = [0.55, 0.32, 0.91];
var names = ["Ernie", "Bert", "Oscar"];

percentages[1] //Returns 0.32
names[1] //Returns "Bert"

Although I don’t recommend it, different types of values can even be stored within the
same array:

var mishmash = [1, 2, 3, 4.5, 5.6, "oh boy", "say it isn't", true];

Objects
Arrays are great for simple lists of values, but with more complex datasets, you’ll want
to put your data into an object. For our purposes, think of a JavaScript object as a custom
data structure. We use curly brackets {} to indicate an object. In between the brackets,
we include properties and values. A colon : separates each property and its value, and
a comma separates each property/value pair:

var fruit = {
 kind: "grape",
 color: "red",
 quantity: 12,

JavaScript | 37

 tasty: true
};

To reference each value, we use dot notation, specifying the name of the property:

fruit.kind //Returns "grape"
fruit.color //Returns "red"
fruit.quantity //Returns 12
fruit.tasty //Returns true

Think of the value as “belonging” to the object. Oh, look, some fruit. “What kind of fruit
is that?” you might ask. As it turns out, fruit.kind is "grape". “Are they tasty?” Oh,
definitely, because fruit.tasty is true.

Objects and Arrays
You can combine these two structures to create arrays of objects, or objects of arrays,
or objects of objects or, well, basically whatever structure makes sense for your dataset.

Let’s say we have acquired a couple more pieces of fruit, and we want to expand our
catalog accordingly. We use hard brackets [] on the outside, to indicate an array, fol‐
lowed by curly brackets {} and object notation on the inside, with each object separated
by a comma:

var fruits = [
 {
 kind: "grape",
 color: "red",
 quantity: 12,
 tasty: true
 },
 {
 kind: "kiwi",
 color: "brown",
 quantity: 98,
 tasty: true
 },
 {
 kind: "banana",
 color: "yellow",
 quantity: 0,
 tasty: true
 }
];

To access this data, we just follow the trail of properties down to the values we want.
Remember, [] means array, and {} means object. fruits is an array, so first we use
bracket notation to specify an array index:

fruits[1]

Next, each array element is an object, so just tack on a dot and a property:

38 | Chapter 3: Technology Fundamentals

fruits[1].quantity //Returns 98

Here’s a map of how to access every value in the fruits array of objects:

fruits[0].kind == "grape"
fruits[0].color == "red"
fruits[0].quantity == 12
fruits[0].tasty == true

fruits[1].kind == "kiwi"
fruits[1].color == "brown"
fruits[1].quantity == 98
fruits[1].tasty == true

fruits[2].kind == "banana"
fruits[2].color == "yellow"
fruits[2].quantity == 0
fruits[2].tasty == true

Yes, that’s right, we have fruits[2].quantity bananas.

JSON
At some point in your D3 career, you will encounter JavaScript Object Notation. You
can read up on the details, but JSON is basically a specific syntax for organizing data as
JavaScript objects. The syntax is optimized for use with JavaScript (obviously) and AJAX
requests, which is why you’ll see a lot of web-based application programming interfaces
(APIs) that return data formatted as JSON. It’s faster and easier to parse with JavaScript
than XML, and of course D3 works well with it.

All that, and it doesn’t look much weirder than what we’ve already seen:

{
 "kind": "grape",
 "color": "red",
 "quantity": 12,
 "tasty": true
}

The only difference here is that our property names are now surrounded by double
quotation marks "", making them string values.

JSON objects, like all other JavaScript objects, can of course be stored in variables like
so:

var jsonFruit = {
 "kind": "grape",
 "color": "red",
 "quantity": 12,
 "tasty": true
};

JavaScript | 39

GeoJSON
Just as JSON is just a formalization of existing JavaScript object syntax, GeoJSON is a
formalized syntax of JSON objects, optimized for storing geodata. All GeoJSON object
are JSON objects, and all JSON objects are JavaScript objects.

GeoJSON can store points in geographical space (typically as longitude/latitude coor‐
dinates), but also shapes (such as lines and polygons) and other spatial features. If you
have a lot of geodata, it’s worth it to parse it into GeoJSON format for best use with D3.

We’ll get into the details of GeoJSON when we talk about geomaps, but for now, just
know that this is what simple GeoJSON data could look like the following:

{
 "type": "FeatureCollection",
 "features": [
 {
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [150.1282427, -24.471803]
 },
 "properties": {
 "type": "town"
 }
 }
]
}

Confusingly, longitude is always listed before latitude. Get used to thinking in terms of
lon/lat instead of lat/lon.

Mathematical Operators
You can add, subtract, multiply, and divide values using the following operators,
respectively:

+ //Add
- //Subtract
* //Multiply
/ //Divide

For example, type 8 * 2 into the console, press Enter, and you should see 16. More
examples:

1 + 2 //Returns 3
10 - 0.5 //Retuns 9.5
33 * 3 //Returns 99
3 / 4 //Returns 0.75

40 | Chapter 3: Technology Fundamentals

Comparison Operators
You can compare values against each other using the following operators:

== //Equal to
!= //Not equal to
< //Less than
> //Greater than
<= //Less than or equal to
>= //Greater than or equal to

These all compare some value on the left to some value on the right. If the result is true,
then true is returned. If the result is false, false is returned.

Try it! Type each of the following into the console and see what you get:

3 == 3
3 == 5
3 >= 3
3 >= 2
100 < 2
298 != 298

(JavaScript also offers the === and !== operators, which perform equality comparisons
without type coercion, but I won’t be addressing that distinction in this book.)

Control Structures
Whenever your code needs to make a decision or repeat something, you need a control
structure. There are lots to choose from, but we are primarily interested in if statements
and for loops.

if() only

An if statement uses comparison operators to determine if a statement is true or false:

if (test) {
 //Code to run if true
}

If the test between parentheses is true, then the code between the curly brackets is run.
If the test turns up false, then the bracketed code is ignored, and life goes on. (Tech‐
nically, life goes on either way.)

if (3 < 5) {
 console.log("Eureka! Three is less than five!");
}

In the preceding example, the bracketed code will always be executed, because 3 < 5 is
always true. if statements are more useful when comparing variables or other condi‐
tions that change.

JavaScript | 41

if (someValue < anotherValue) {
 //Set someValue to anotherValue, thereby restoring
 //a sense of balance and equilibrium to the world.
 someValue = anotherValue;
}

for() now

You can use for loops to repeatedly execute the same code, with slight variations. A for
loop uses this syntax:

for (initialization; test; update) {
 //Code to run each time through the loop
}

They are so-called because they loop through the code for as many times as specified.
First, the initialization statement is run. Then, the test is evaluated, like a mini if
statement. If the test is true, then the bracketed code is run. Finally, the update statement
is run, and the test is reevaluated.

The most common application of a for loop is to increase some variable by 1 each time
through the loop. The test statement can then control how many times the loop is run
by referencing that value. (The variable is often named i, purely by convention, because
it is short and easy to type.)

for (var i = 0; i < 5; i++) {
 console.log(i); //Prints value to console
}

The preceding for loop prints the following to the console:

0
1
2
3
4

The first time through, a variable named i is declared and set to zero. i is less than five,
so the bracketed code is run, printing the current value of i (zero) to the console. Finally,
the value of i is increased by one. (i++ is shorthand for i = i + 1.) So now i is 1, so
the test again evaluates as true, the bracketed code is run again, but this time the value
printed to the console is 1.

As you can see, reading prose descriptions of loops is about as interesting as executing
them by hand yourself. This is why we invented computers. So I’ll skip to the end and
point out that after the final iteration, i is increased to 5, after which the test returns
false, and the loop is over.

42 | Chapter 3: Technology Fundamentals

It’s important to note that counting began at zero, and not one. That is, the “first” value
of i was 0. Why not 1? This is another arbitrary convention, but it nicely parallels how
computers count arrays of values.

What arrays are made for()
Code-based data visualization would not be possible without arrays and the mighty
for() loop. Together, they form a data geek’s dynamic duo. (If you do not consider
yourself a “data geek,” then may I remind you that you are reading a book titled Inter‐
active Data Visualization for the Web?)

An array organizes lots of data values in one convenient place. Then for() can quickly
“loop” through every value in an array and perform some action with it—such as, express
the value as a visual form. D3 often manages this looping for us, such as with its magical
data() method.

Note this example, which loops through each of the values in an array called numbers:

var numbers = [8, 100, 22, 98, 99, 45];

for (var i = 0; i < numbers.length; i++) {
 console.log(numbers[i]); //Print value to console
}

See that numbers.length? That’s the beautiful part. length is a property of every array.
In this case, numbers contains six values, so numbers.length resolves to 6, and the loop
runs six times. If numbers were 10 positions long, the loop would run 10 times. If it were
10 million positions long … yeah, you get it. This is what computers are good at: taking
a set of instructions and executing them over and over. And this is at the heart of why
data visualization can be so rewarding—you design and code the visualization system,
and the system will respond appropriately, even as you feed it different data. The system’s
mapping rules are consistent, even when the data is not.

Functions
Functions are chunks of code that do things.

More specifically, functions are special because they can take arguments or parameters
as input, and then return values as output. Parentheses are used to call (execute) a
function. If that function requires any arguments (input values), then they are passed
to the function by including them in the parentheses.

Whenever you see something like the following code, you know it’s a function:

calculateGratuity(38);

In fact, you’ve already seen functions at work with console.log, as in the following:

console.log("Look at me. I can do stuff!");

JavaScript | 43

But the best part about functions is that you can define your own. There are several
ways to define functions in JavaScript, but here’s the simplest, which I’ll use throughout
this book:

var calculateGratuity = function(bill) {
 return bill * 0.2;
};

This declares a new variable named calculateGratuity. Then, instead of assigning a
simple number or string, we store an entire function in the variable. In the parentheses,
we name bill, another variable to be used only by the function itself. bill is the ex‐
pected input. When called, the function will take that input, multiply it by 0.2, and
return the result as its output.

So now if we call:

calculateGratuity(38);

the function returns 7.6. Not bad—a 20 percent tip!

Of course, you could store the output to use it elsewhere later, as in:

var tip = calculateGratuity(38);
console.log(tip); //Prints 7.6 to the console

There are also anonymous functions that, unlike calculateGratuity, don’t have names.
Anonymous functions are used all the time with D3, but I’ll introduce them later.

Comments
/* JavaScript supports CSS-style comments like this. */

// But double-slashes can be used as well.
// Anything following // on the same line will be ignored.
// This is helpful for including brief notes to yourself
// as to what each line of code does, as in:

console.log("Brilliant"); //Prints "Brilliant" to the console

Referencing Scripts
Scripts can be included directly in HTML, between two script tags, as in:

<body>
 <script type="text/javascript">
 alert("Hello, world!");
 </script>
</body>

or stored in a separate file with a .js suffix, and then referenced somewhere in the HTML
(could be in the head, as shown here, or also just before the end of the closing body tag):

44 | Chapter 3: Technology Fundamentals

<head>
 <title>Page Title</title>
 <script type="text/javascript" src="myscript.js"></script>
</head>

JavaScript Gotchas
As a bonus, and at no extra charge, I would like to share with you my top four JavaScript
gotchas: things that, had I known earlier, would have saved me many hours of late-night
debugging sessions, anxiety-induced panic, and increased cortisol levels. You might
want to come back and reference this section later.

Dynamic typing
I do love how your fingers flutter across the keyboard, but that’s not what I’m talking
about. No, JavaScript is a loosely typed language, meaning you don’t have to specify what
type of information will be stored in a variable in advance. Many other languages, like
Java (which is completely different from JavaScript), require you to declare a variable’s
type, such as int, float, boolean, or String:

//Declaring variables in Java
int number = 5;
float value = 12.3467;
boolean active = true;
String text = "Crystal clear";

JavaScript, however, automatically types a variable based on what kind of information
you assign to it. (Note that '' or "" indicate string values. I prefer double quotation
marks "", but some people like singles ''.)

//Declaring variables in JavaScript
var number = 5;
var value = 12.3467;
var active = true;
var text = "Crystal clear";

How boring—var, var, var, var!—yet handy, as we can declare and name variables
before we even know what type of data will go into them. You can even change a variable’s
type on-the-fly without JavaScript freaking out on you:

var value = 100;
value = 99.9999;
value = false;
value = "This can't possibly work.";
value = "Argh, it does work! No errorzzzz!";

I mention this because one day a numeric value will be accidentally stored as a string,
and it will cause some part of your code to behave strangely, and basically I don’t want
you to come crying to me when that happens. Thus, know that whenever a variable’s
type is in doubt, you can employ the typeof operator:

JavaScript | 45

